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Abstract: In this paper, we solve two type of fractional integrals based on Jumarie’s modified Riemann-Liouville (R-

L) fractional calculus. The main two methods used in this article are change of variables for fractional integral and 

integration by parts for fractional calculus. On the other hand, a new multiplication of fractional analytic functions 

plays an important role in this paper. And these two types of fractional integrals are generalizations of the integrals 

in traditional calculus.  
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I.   INTRODUCTION 

Fractional calculus is a branch of mathematical analysis, which studies several different possibilities of defining real order 

or complex order. In the second half of the 20th century, a large number of studies on fractional calculus were published in 

engineering literature. Fractional calculus is widely welcomed and concerned because of its applications in many fields 

such as mechanics, dynamics, modelling, physics, economics, viscoelasticity, biology, electronics, signal processing, and 

so on [1-9]. However, fractional calculus is different from ordinary calculus. The definition of fractional derivative and 

integral is not unique. Commonly used definitions include Riemann-Liouville (R-L) fractional derivative, Caputo fractional 

derivative, Grunwald-Letnikov (G-L) fractional derivative, and Jumarie’s modified R-L fractional derivative [10-13].  

In this paper, we study the following two type of fractional integrals: 

                                                                       ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑚

⨂(𝐸𝛼(𝑥𝛼))⨂𝑛],                                                              (1) 

                                                                 ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑝

⨂ (𝐿𝑛𝛼(1 +
1

Γ(𝛼+1)
𝑥𝛼))

⨂𝑞

].                                               (2) 

Where  0 < α ≤ 1, and 𝑚, 𝑛, 𝑝, 𝑞 are positive integers. The change of variables for fractional integral and the integration 

by parts for fractional calculus are the main methods used in this article. In addition, a new multiplication of fractional 

analytic functions plays an important role in this paper. In fact, the above two types of fractional integrals are generalizations 

of the integrals in classical calculus.  

II.   PRELIMINARIES 

First, the fractional calculus used in this paper and its properties are introduced below. 

Definition 2.1 ([14]): Let 0 < 𝛼 ≤ 1, and 𝑥0 be a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                        ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 .                                                    (3) 
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And the Jumarie’s modified R-L 𝛼-fractional integral is defined by 

                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                            (4) 

where Γ( ) is the gamma function.  

Proposition 2.2 ([15]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                              (5) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                         (6) 

Next, we introduce the definition of fractional analytic function. 

Definition 2.3 ([16]): Suppose that 𝑥, 𝑥0, and 𝑎𝑘 are real numbers for all 𝑘, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 

𝑓𝛼: [𝑎, 𝑏] → 𝑅 can be expressed as an 𝛼-fractional power series, that is, 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0  on some open 

interval containing 𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. In addition, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on 

closed interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional 

analytic function on [𝑎, 𝑏]. 

In the following, a new multiplication of fractional analytic functions is introduced. 

Definition 2.4 ([17]): Let 0 < 𝛼 ≤ 1 , and 𝑥0  be a real number. If 𝑓𝛼(𝑥𝛼)  and  𝑔𝛼(𝑥𝛼)  are two 𝛼 -fractional analytic 

functions defined on an interval containing 𝑥0 , 

                                            𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0 ,                                   (7) 

                                              𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                 (8) 

Then we define 

                                                                         𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)  

                                                                   = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ⊗ ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0   

                                                                   = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (𝑥 − 𝑥0)𝑘𝛼 .                                            (9) 

In other words, 

                                                       𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0 ⊗ ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0   

                                                 = ∑
1

𝑘!
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

 .                                                 (10) 

Definition 2.5 ([18]): Suppose that 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic functions defined on an 

interval containing 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0  ,                               (11) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                (12) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑘

𝑘!
(𝑔𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 ,                                            (13) 

and 
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                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑘

𝑘!
(𝑓𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 .                                             (14) 

Definition 2.6 ([18]): Let 0 < 𝛼 ≤ 1. If 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions satisfies 

                                                          (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) =
1

Γ(𝛼+1)
𝑥𝛼.                                                         (15) 

Then 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are called inverse functions of each other. 

Definition 2.7: Suppose that 𝑛 is a positive integer, then (𝑓𝛼(𝑥𝛼))
⊗𝑛

= 𝑓𝛼(𝑥𝛼) ⊗ ⋯ ⊗ 𝑓𝛼(𝑥𝛼) is called the 𝑛th power of 

the fractional analytic function 𝑓𝛼(𝑥𝛼). 

Theorem 2.8 (change of variables for fractional integral) ([19]): If 0 < 𝛼 ≤ 1, 𝑔𝛼  is 𝛼-fractional analytic at 𝑥 = 𝑎, 𝑓𝛼 is 

𝛼-fractional analytic at 𝑥 = 𝑔𝛼(𝑎) and the range of 𝑔𝛼 contained in the domain of 𝑓𝛼, then 𝑓𝛼 ∘ 𝑔𝛼 is 𝛼-fractional analytic 

at 𝑥 = 𝑎, and 

                                            ( 𝐼𝑎 𝑏
𝛼) [(𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) ⊗ ( 𝐷𝑎 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]] = ( 𝐼𝑔𝛼(𝑎) 𝑔𝛼(𝑏)
𝛼 )[𝑓𝛼(𝑔𝛼)],                                 (16) 

for 𝑎, 𝑏 ∈ 𝐼. 

Theorem 2.9 (integration by parts for fractional calculus) ([20]): Suppose that 0 < 𝛼 ≤ 1, 𝑎, 𝑏 are real numbers, and 

𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic functions, then 

         ( 𝐼𝑎 𝑏
𝛼) [𝑓𝛼(𝑥𝛼) ⊗ ( 𝐷𝑎 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]] = [ 𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)]𝑥=𝑎
𝑥=𝑏 − ( 𝐼𝑎 𝑏

𝛼) [𝑔𝛼(𝑥𝛼) ⊗ ( 𝐷𝑎 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]].          (17) 

tnote reference;Some fractional analytic functions are introduced below. 

Definition 2.10 ([18]): If 0 < α ≤ 1, and 𝑥, 𝑥0 are real numbers. The 𝛼-fractional exponential function is defined by 

                                                                𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑘𝛼

Γ(𝑘𝛼+1)
= ∑

1

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                               (18) 

And the 𝛼-fractional logarithmic function 𝐿𝑛𝛼(𝑥𝛼) is the inverse function of 𝐸𝛼(𝑥𝛼). 

III.   MAIN RESULTS 

The followings are major results in this paper. 

Theorem 3.1: Let  0 < 𝛼 ≤ 1, and  𝑚, 𝑛 be positive integers. Then the 𝛼-fractional integral 

                                                         ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑚

⨂(𝐸𝛼(𝑥𝛼))⨂𝑛]  

                                                    = [∑
(−1)𝑘∙(𝑚)𝑘

𝑛𝑘+1 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑚−𝑘)
𝑚
𝑘=0 ] ⨂𝐸𝛼(𝑛𝑥𝛼) −

(−1)𝑚∙𝑚!

𝑛𝑚+1  .                                  (19) 

Where  (𝑚)𝑘 = 𝑚(𝑚 − 1) ⋯ (𝑚 − 𝑘 + 1) for positive integers 𝑘, and (𝑚)0 = 1. 

Proof    Using integration by parts for fractional calculus yields 

                                          ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑚

⨂(𝐸𝛼(𝑥𝛼))⨂𝑛]  

                                    =  ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑚

⨂𝐸𝛼(𝑛𝑥𝛼)]  

                                   =
1

𝑛
(

1

Γ(𝛼 + 1)
𝑥𝛼)

⨂𝑚

⨂𝐸𝛼(𝑛𝑥𝛼) −
𝑚

𝑛2
(

1

Γ(𝛼 + 1)
𝑥𝛼)

⨂(𝑚−1)

⨂𝐸𝛼(𝑛𝑥𝛼) + ⋯ 

                                      +
(−1)𝑚 ∙ 𝑚!

𝑛𝑚
(

1

Γ(𝛼 + 1)
𝑥𝛼)

⨂(𝑚−1)

⨂𝐸𝛼(𝑛𝑥𝛼) +
(−1)𝑚 ∙ 𝑚!

𝑛𝑚+1
⨂𝐸𝛼(𝑛𝑥𝛼) −

(−1)𝑚 ∙ 𝑚!

𝑛𝑚+1
 

                                  = [∑
(−1)𝑘∙(𝑚)𝑘

𝑛𝑘+1 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑚−𝑘)
𝑚
𝑘=0 ] ⨂𝐸𝛼(𝑛𝑥𝛼) −

(−1)𝑚∙𝑚!

𝑛𝑚+1  .                                      Q.e.d. 
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Theorem 3.2: If  0 < 𝛼 ≤ 1, and  𝑝, 𝑞 are positive integers. Then the 𝛼-fractional integral 

        ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑝

⨂ (𝐿𝑛𝛼(1 +
1

Γ(𝛼+1)
𝑥𝛼))

⨂𝑞

]  

   = ∑ ∑
(−1)𝑗+𝑘(

𝑝
𝑗

)∙(𝑞)𝑘

(𝑝+1−𝑗)𝑘+1 (𝐿𝑛𝛼(1 +
1

Γ(𝛼+1)
𝑥𝛼))

⨂(𝑞−𝑘)

⨂ (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑝+1−𝑗)

− ∑
(−1)𝑞+𝑗∙(

𝑝
𝑗

)∙𝑞!

(𝑝+1−𝑗)𝑞+1

𝑝
𝑗=0

𝑞
𝑘=0

𝑝
𝑗=0 .            (20) 

Proof  Let  1 +
1

Γ(𝛼+1)
𝑥𝛼 = 𝐸𝛼(𝑡𝛼), then  𝐿𝑛𝛼(1 +

1

Γ(𝛼+1)
𝑥𝛼) =

1

Γ(𝛼+1)
𝑡𝛼.  By change of variables for fractional integral 

and Theorem 3.1, we obtain 

      ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑝

⨂ (𝐿𝑛𝛼(1 +
1

Γ(𝛼+1)
𝑥𝛼))

⨂𝑞

]   

 = ( 𝐼0 𝑡
𝛼) [𝐸𝛼(𝑡𝛼)⨂(𝐸𝛼(𝑡𝛼) − 1)⨂𝑝⨂ (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑞

]  

 = ( 𝐼0 𝑡
𝛼) [(

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑞

⨂ [(𝐸𝛼(𝑡𝛼))
⨂(𝑝+1)

− (𝑝
1

)(𝐸𝛼(𝑡𝛼))
⨂𝑝

+ (𝑝
2

)(𝐸𝛼(𝑡𝛼))
⨂(𝑝−1)

− ⋯ + (−1)𝑝 (𝑝
𝑝

) (𝐸𝛼(𝑡𝛼))
⨂1

]]  

 = ( 𝐼0 𝑡
𝛼) [(

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑞

⨂ ∑ (−1)𝑗 (𝑝
𝑗
) 𝐸𝛼((𝑝 + 1 − 𝑗)𝑡𝛼)𝑝

𝑗=0 ]  

 = ( 𝐼0 𝑡
𝛼) [∑ (−1)𝑗 (𝑝

𝑗
) (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑞

⨂𝐸𝛼((𝑝 + 1 − 𝑗)𝑡𝛼)𝑝
𝑗=0 ]    

 = ∑ (−1)𝑗 (𝑝
𝑗
) ( 𝐼0 𝑡

𝛼) [(
1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑞

⨂𝐸𝛼((𝑝 + 1 − 𝑗)𝑡𝛼)]
𝑝
𝑗=0   

 = ∑ (−1)𝑗 (𝑝
𝑗
)

𝑝
𝑗=0  ([∑

(−1)𝑘∙(𝑞)𝑘

(𝑝+1−𝑗)𝑘+1 (
1

Γ(𝛼+1)
𝑡𝛼)

⨂(𝑞−𝑘)
𝑞
𝑘=0 ] ⨂𝐸𝛼((𝑝 + 1 − 𝑗)𝑡𝛼)) − ∑

(−1)𝑞+𝑗∙(
𝑝
𝑗

)∙𝑞!

(𝑝+1−𝑗)𝑞+1

𝑝
𝑗=0   

 = ∑ ∑
(−1)𝑗+𝑘(

𝑝
𝑗

)∙(𝑞)𝑘

(𝑝+1−𝑗)𝑘+1 (
1

Γ(𝛼+1)
𝑡𝛼)

⨂(𝑞−𝑘)

⨂𝐸𝛼((𝑝 + 1 − 𝑗)𝑡𝛼) − ∑
(−1)𝑞+𝑗∙(

𝑝
𝑗

)∙𝑞!

(𝑝+1−𝑗)𝑞+1

𝑝
𝑗=0

𝑞
𝑘=0

𝑝
𝑗=0   

 = ∑ ∑
(−1)𝑗+𝑘(

𝑝
𝑗

)∙(𝑞)𝑘

(𝑝+1−𝑗)𝑘+1 (𝐿𝑛𝛼(1 +
1

Γ(𝛼+1)
𝑥𝛼))

⨂(𝑞−𝑘)

⨂ (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑝+1−𝑗)

− ∑
(−1)𝑞+𝑗∙(

𝑝
𝑗

)∙𝑞!

(𝑝+1−𝑗)𝑞+1

𝑝
𝑗=0

𝑞
𝑘=0

𝑝
𝑗=0  . 

                                                                                                                                                                                   Q.e.d. 

IV.   CONCLUSION 

This paper studies two type of fractional integrals based on Jumarie type of R-L fractional calculus. The major methods we 

used are change of variables for fractional integral and integration by parts for fractional calculus. A new multiplication of 

fractional analytic functions plays an important role in this article. In fact, these two types of fractional integrals are 

generalizations of integrals in ordinary calculus. In the future, we will continue to use these methods to study problems in 

fractional calculus and applied mathematics. 
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